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Atmospheric Radio Occultations
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Flybys at Outer Planets vs. a Decade in Mars Orbit
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Temperature profiles for the giant planets derived from radio

occultation data acquired with the Voyager spacecraft (from Lindal, 1992)
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Earth Atmospheric Occultations via Constellations
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Earth Atmospheric Occultations Example Results

* Anthes et al., 2008, COSMIC/FORMOSAT-3

* 6 microsatellites launched into 512-km
orbit providing 1500 RO daily

* Global 3-D coverage: 40 km to surface
70% - 90% of RO reach to ~1 km of surface

e Vertical resolution: ~¥~100 m in lower
troposphere

* Independent height, pressure, and
temperature data

* High accuracy: averaged profiles to < 0.1 K




From Spacecraft-to-DSN to Spacecraft-to-Spacecraft

5 decades of planetary spacecraft links to Earth

* Reversed DSN-to-spacecraft for NH at Pluto - \ During occultations,

data stored onboard

. . . . + 2 : CubeSats
Earth science community advanced technique via g S

GPS satellites transmitting to science spacecraft
Carry crosslink concepts to planetary
atmospheres for tremendous advantages

Data offload during
Science motivation & assist human missions (V) fo el
Need mission design & navigation (V) | ‘ ‘
e e . » Approximately 14 MB
Need radio instrumentation (V) . acquired per day per

satellite

Need small spacecraft platform ()
Need a demo of concept (V)

Pre-Decisional Information -- For
Planning and Discussion Purposes Only

Ready for science mission implementation



Advantages of Crosslink Radio Occultation

Improve temporal & spatial resolution

Rapid global coverage with diurnal, seasonal,
annual repeatability

High vertical resolution of T-P profiles
Not obscured by dust & profiles reach surface
Possibly higher SNR
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MEPAG Goal Il: Understand Processes & History of Climate

Objectives Sub-objectives
A. Characterize the state of Al. Constrain the processes that control the present distributions of
the present climate of Mars' dust, water, and carbon dioxide in the lower atmosphere, atdaily,
atmosphere and surrounding | seasonal and multi-annual timescales.

plasma environment, and the

underlying processes, under .. . g epe
the current orbital Investigation Al.1: Measure the state and variability

configuration. of the lower atmosphere from turbulent scales to
global scales (High Priority).

MEPAG Goal IV: Prepare for Human Exploration

B. Obtain knowledge of Mars | B1l. Determine the aspects of the atmospheric state that affect Entry,
sufficient to design and Descent, & Landing (EDL) design, or atmospheric electricity that may
implement a human mission | pose a riskto ascent vehicles, ground systems, and human explorers.

to the Martian surface with | |hyestigation B1.2: Monitor surface pressure and near surface
IIEIEELL RS T L meteorology over various temporal scales (diurnal, seasonal,
performance. annual), and if possible in more than one locale (High Priority).



Measurement Physics Drives the Desigh Concept

Descending orbiter

é> ’ Kieplay CubeSat 1 Retrieved quantity:
\/\ . Doppler shift.caused by
Deploy CubeSat 2
. | atmospheric refraction
Velocities known

A \\ - & : / to high accuracy
a Deploy CubeSat 3 _ - _ " fa

>

Limited clock drift

Deploy during descent of
delivery orbiter
Differential precession of Science traceability based on
orbit planes achieves power and antenfig - simulated retrieval processing
desired variety of orbits | gain to achieve ‘

Candidate altitudes: 4200, § needed precision . ~ Pre-Decisional Information -- For
2100, & 300 km _ ' Planning and Discussion Purposes Only
’ , T

Sufficient transmit




Iris Radio with Dual-One Way Range Rate

Vehicle A Vehicle B

\/\/\/ Receive

T: Fast clock increases phase

R: Fast clock decreases phase

Transmit

Summing phase data in post-processing reduces
clock errors

Simultaneous X-band transmit/receive capability
Navigation requirements achieved with crosslink
measurements above atmosphere and links to
orbiter



Demonstration: UHF Link from Odyssey to MRO

Radio Science ‘j

* Found geometries where orbiters communicating
with rover on surface were in line-of-sight for a
crosslink (A ~75 cm); made possible due to flexible
design of the Electra software-defined radio.
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Height above ellipsoid [km]

lonospheric Retrievals from UHF Radio
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Start with the Mars Cube One (MarCO) Design

6U, soon to be first planetary CubeSat

Make radio system the science instrument
Cost savings, lower risk

MarCO’s X-band reflect-array (relay of 8 kbps)
replaced by patch antenna

Other simplifications

-

Source: Asmar, S.W., “Mars Relay CubeSat,” NASA Tech Briefs Magazine, September 2015.



